
http://www.wiley.com/buy/9780470247983

 Analyzing and Optimizing
Query Performance

 The power of Analysis Services lies in its ability to provide fast query response time for decision
makers who need to analyze data, draw conclusions, and make appropriate changes in their
business. The OLAP Report defines OLAP as Fast Analysis of Shared Multidimensional
Information (http://www.olapreport.com/fasmi.htm). The word “ fast ” in this context means
that the system is able to deliver results to users in less than 5 seconds (with a few highly complex
queries taking more than 20 seconds). We also expect that most business decision makers will use
client tools that graphically represent the data from Analysis Services for easy interpretation and
understanding. As an end user, you expect to see the data quickly in order to analyze and make
decisions. Some common operations that OLAP client tools offer are drill down, drill up, and
compare data year over year. Users do not have time to wait for hours to get a response. Hence,
queries sent to Analysis Services need to return data within seconds, at most in minutes. Query
performance is pivotal to a successful Business Intelligence project deployment. A system that has
very good performance will bring great business value to your company. However, you should be
aware there can be queries to Analysis Services that can take more than a few minutes. Typically
such queries are issued via overnight reporting systems.

 Analysis Services supports three storage modes: MOLAP, ROLAP, and HOLAP. You will usually
obtain the best performance when your UDM storage mode is MOLAP. When you choose MOLAP
storage, Analysis Services 2008 will store the dimension data and fact data in its own efficient,
compact multidimensional structure format. Fact data is compressed and its size is approximately
10 to 30 percent of the size as when stored in a relational database. In addition to its own efficient
and compact data store, Analysis Services builds specialized dimension attribute indices for
efficient data retrieval. The data is stored specifically in a multidimensional structure to best serve
MDX query needs. If you use the ROLAP or HOLAP storage modes, queries to Analysis Services
might have to fetch data from the relational data source at query time. Retrieving data from the
relational data sources will significantly slow your query performance because you incur relational
query processing time, the time needed to fetch the data over the network, and finally the time it
takes to aggregate the data within Analysis Services.

 Analysis Services 2008 tries to achieve the best of the OLAP and relational worlds. OLAP
queries typically request aggregated data. For example, you may store daily sales information for
products. Typical OLAP queries will request aggregated sales by month, quarter, or year. In such
circumstances, every day ’ s sales data needs to be aggregated for the period requested by the query,
for example the entire year. If users are requesting aggregated data on a single dimension, you will be

c15.indd 517c15.indd 517 2/10/09 11:50:12 AM2/10/09 11:50:12 AM

518

Part III: Advanced Administration and Performance Optimization

able to do a simple sum in the relational database. However, OLAP queries are typically multidimensional
and need aggregated data across multiple dimensions with complex business logic calculations applied to
each dimension. To improve query performance, Analysis Services allows you to specify aggregations,
which you learned about in Chapter 14 . In addition to aggregations, you learned several design techniques
in that chapter to optimize your UDM to get the best performance from your Analysis Services database.
Having done your best UDM design to satisfy your business needs, you might still encounter performance
issues at query time. In this chapter you learn about the various components of Analysis Services that work
together to execute MDX queries. You also learn how to analyze Analysis Services query performance
issues as well as techniques and best practices for improving query performance.

 The Calculation Model
 Before we start looking at the overall Analysis Services query execution architecture, let ’ s recap what you
learned about the calculation model of Analysis Services in previous chapters of this book. When using
the MOLAP storage mode, the data that comprises the cube is retrieved from a relational database and
stored in SSAS ’ s proprietary format. The data will be aggregated by the SSAS engine based on the MDX
query. SSAS provides a way to pre - calculate aggregated data. This helps speed the retrieval of query
results for MDX queries that can be satisfied with these pre - calculated aggregations. Most of the
calculations that apply specific business logic in the UDM are written in MDX scripts, objects within
your Analysis Services 2008 database that provide a procedural way to define calculations. SSAS features
such as unary operators and custom rollups also help in defining MDX calculations needed within your
UDM. The cube editor in Business Intelligence Development Studio provides a way to debug the
calculations defined in your MDX scripts. However, there is complex calculation logic within the SSAS
engine that defines how the calculations are applied to a specific cell. Each cell within the cube is either a
value from your relational database or a calculation, as illustrated in Figure 15 - 1 .

All 1237 475 176 299 762 148 149 465

All WA Seattle Redmond CA Los
Angeles

San
Francisco

San
Diego

Q1 367 110 44 66 257 53 32 172

Jan 148 55 12 43 93 10 - 83

Feb 164 32 32 - 132 25 32 75

Mar

Q2

Apr

May

Jun

Q3

Jul

Aug

Sep

Q4

Oct

Nov

Dec

55 23 - 23 32 18 - 14

360 17 65 113 182 28 65 89

55 23 23 - 32 9 23 -

135 73 19 54 62 19 19 24

170 82 23 59 88 - 23 65

235 122 11 111 113 11 17 85

24 12 - 12 12 - - 12

42 34 - 34 8 - - 8

169 76 11 65 93 11 17 65

275 65 56 9 210 56 35 119

133 24 21 3 109 21 - 88

100 23 23 - 77 23 23 31

42 18 12 6 24 12 12 -

 Figure 15 - 1

c15.indd 518c15.indd 518 2/10/09 11:50:14 AM2/10/09 11:50:14 AM

Chapter 15: Analyzing and Optimizing Query Performance

519

 Figure 15 - 1 shows cells with sales corresponding to various months in the year and cities in the states of
Washington and California. The members of the axes and the cell values that are calculated from the
relational backend are shown in one color. You can see that some cells have a dash (–), indicating that no
value was available for that specific cell from the relational backend. The remaining cells contain
aggregated data and are shown in a darker color. For example, cells corresponding to Seattle and the
months April, May, and June were all retrieved from the relational backend table. However, the cell
value for the Q2 quarter and Seattle is aggregated from the sales for Seattle for the months of April, May,
and June.

 You can have several MDX calculations defined for a specific cell. The value for a cell that contains
multiple MDX calculations is the value of the last calculation that gets applied to the cell. Several types
of calculations can be defined in your MDX scripts: calculated members, named sets, unary operators,
custom rollups, assignments, and calculations in sessions or queries. You have learned about all these
types of calculations in Chapters 3 through 10 . The remainder of this section offers a quick review of
calculations in Analysis Services before we look at the details of the MDX query execution
architecture.

 MDX Script
 There are multiple ways calculations can be defined in Analysis Services 2008. Most are defined using
the MDX Script, which is a centralized calculation store for the cube. Dimension calculations such as
unary operators and custom rollups are a part of the dimension and can be defined using attribute
properties. You can define these calculations via MDX script but we highly recommend using the
support for defining them via dimension attribute properties to achieve better performance. Each cube in
Analysis Services 2008 contains a single MDX Script. Business Intelligence Development Studio (BIDS)
exposes the MDX Script object to editing and debugging via the Calculations tab (shown in Figure 15 - 2),
as you learned in Chapters 6 and 9 . MDX Script provides a procedural execution model and easier
debugging of calculations, as seen in Chapter 6 . The commands in the script are executed in the order
they have been defined. You learned about the Pass Value (also called Pass Order) in Chapter 10 ,
which refers to stages of calculations applied to the cube when there are multiple calculations such as
custom rollup, unary operators, and assignment statements that are applied to the cells of a cube. In
Analysis Services 2008, a new Pass Value is created for each MDX calculation defined in the MDX
Script to avoid infinite recursion. The creation of a new PASS Value for each cell calculation also
eliminates the need for Solve Order . (Solve Order is used to help in determining the order of
calculations within a single Pass in SQL Server Analysis Services 2000, which is deprecated from
SSAS 2005.)

c15.indd 519c15.indd 519 2/10/09 11:50:15 AM2/10/09 11:50:15 AM

520

Part III: Advanced Administration and Performance Optimization

 The single view of the calculations via the MDX Script simplifies the maintenance of your MDX
calculations as well as debugging. As part of your UDM development, you can use source code control
and check in various versions of your Analysis Services project. This helps you track the history of
changes to your project and also aids in maintenance. Because the calculations are part of the Analysis
Services project, you automatically get version control of the calculation changes.

 We recommend you periodically check in the changes made to your Analysis Services project similar
to what you would do for a C# or a C++ project.

 The first and foremost command in an MDX script is the CALCULATE command. The CALCULATE
command populates each cell in the cube along with aggregated data from the fact level data (also called
leaf level data). Without the CALCULATE command the cube will only contain the fact level data. The
syntax of the CALCULATE command is

CALCULATE [< subcube >];

 If the < subcube > argument is not specified, the current cube is used. The CALCULATE command is
automatically added by the Cube Wizard when you create a cube in Business Intelligence Development
Studio. BIDS typically adds the CALCULATE statement at the beginning of the MDX Script, resulting in
the default aggregation behavior for the measures, which you see in previous versions of SQL Server
Analysis Services. When Analysis Services evaluates the cells, it first loads the fact data into the cube ’ s
cell values. Then it does the default aggregation of the non - leaf cell values. Finally, the MDX calculations
as defined by the Analysis Services rules are applied to determine the final values of the cells in the cube.
The assignment calculations in the MDX Script are evaluated using the Pass Value , which gets
incremented for each MDX Script assignment. Note that the CALCULATE statement does not have any
effect on calculated members defined in the MDX Script.

 Figure 15 - 2

c15.indd 520c15.indd 520 2/10/09 11:50:15 AM2/10/09 11:50:15 AM

Chapter 15: Analyzing and Optimizing Query Performance

521

 Scope and Assignments
 Analysis Services 2008 supports multiple ways to define cell calculations. Each cell can have one or more
calculations defined for it. Unary operators, custom rollups, and Assignments are three ways you can
define cell calculations while designing a cube. In addition, you can define calculations as part of
sessions (session calculations) or queries (query calculations). Unary operators and custom rollups are
defined as part of dimension creation using the dimensions ’ attribute properties, and Assignments are
statements that define cell calculations and are defined in the MDX Script.

 Assignments are typically enclosed within a Scope statement, which helps define calculations on a
subcube. Following is the syntax for the Scope and Assignment statement (=) that you learned about in
Chapter 10 . You can have one or more assignments within each Scope statement. In addition, you can
have nested scopes. Scopes by default inherit the parent scope, however you can override this. For
example, you can have a parent scope of Customers.USA , which will scope to all customers in the
country USA. You can have a nested scope of Customers.Canada , which will override the parent and
change the scope to customers in Canada.

Scope(< subcube >);
 < subcube1 definition > = expression; [Example: this = 1000;]
 …
End Scope;

 Analysis Services restricts the cube space as defined by the Scope statement. Then the assignment
statement is evaluated for all the cells within the specified subcube1 definition. The term this is a
special keyword that denotes the assignment to be evaluated on the default measure of the subcube
defined within the Scope statement. You can have multiple assignment statements that overwrite a
specific cell within the same Scope statement.

 Dimension Attribute Calculations
 You learned about the Custom Rollup and Unary Operators features in Analysis Services 2008 in Chapter
 8 . These features help define how to aggregate data to parent members or other members in the hierarchy.
Analysis Services uses special rules while aggregating data when performing cell calculations in MDX
scripts. In general, you can assume that the last cell calculation is the one that will be the final cell value.
This behavior is referred to as “ Latest Wins. ” In addition, there are instances where a calculation called as
the closest calculation for the cell being aggregated will be the final value; this is called “ Closest Wins. ”
Richard Tkachuk, Program Manager from Microsoft, has written a white paper, “ Introduction to MDX
Scripting in Microsoft SQL Server 2005, ” that demonstrates examples of Latest Wins and Closest Wins
(http://msdn.microsoft.com/en-us/library/ms345116.asp).

 Session and Query Calculations
 As you learned in Chapter 10 , Analysis Services allows you to specify cell calculations in session, query,
or global scopes. Following are the examples from Chapter 10 that show how a cell calculation is defined
at query, session, or global scopes, respectively:

WITH CELL CALCULATION [SalesQuota2005]
FOR ‘([Date].[Fiscal Year]. & [2005],
 [Date].[Fiscal].[Month].MEMBERS,
 [Measures].[Sales Amount Quota])’
AS ‘(PARALLELPERIOD([Date].[Fiscal].[Fiscal Year], 1,
 [Date].[Fiscal].CurrentMember), [Measures].[Sales Amount]) * 2’
SELECT { [Measures].[Sales Amount Quota],

(continued)

c15.indd 521c15.indd 521 2/10/09 11:50:17 AM2/10/09 11:50:17 AM

522

Part III: Advanced Administration and Performance Optimization

 [Measures].[Sales Amount] } ON COLUMNS,
DESCENDANTS({ [Date].[Fiscal].[Fiscal Year]. & [2004],
 [Date].[Fiscal].[Fiscal Year]. & [2005] }, 3, SELF) ON ROWS
FROM [Adventure Works]

CREATE CELL CALCULATION [Adventure Works].[SalesQuota2005]
FOR ‘([Date].[Fiscal].[Month].MEMBERS,[Measures].[Sales Amount Quota]
)’
AS ‘(PARALLELPERIOD ([Date].[Fiscal].[Fiscal Year],
1,[Date].[Fiscal].CurrentMember),[Measures].[Sales Amount])*2 ‘,
CONDITION = ‘[Date].[Fiscal Year].CurrentMember IS
[Date].[Fiscal Year]. & [2005]’

SCOPE([Date].[Fiscal Year]. & [2005],
 [Date].[Fiscal].[Month].MEMBERS,
 [Measures].[Sales Amount Quota]);

 THIS = (ParallelPeriod([Date].[Fiscal].[Fiscal Year],
 1,[Date].[Fiscal].CurrentMember),[Measures].[Sales Amount])*2;

END SCOPE;

 Having calculations at appropriate scopes is based on the requirements of your cube and the client tools
used to interact with the cube. Analysis Services 2008 has specific optimizations that cache the results of
calculations at each scope. When a query is being evaluated, Analysis Services 2008 first tries to retrieve
the results from query scope. If this is not possible, it looks at session scope and finally at global scope.
This is a specific optimization implemented in Analysis Services to help improve query performance,
however some calculations may not be cached (such as calculations that include locale - related
information).

 Having reviewed the calculation model of Analysis Services, let ’ s now look at the architecture and the
steps involved when executing an MDX query.

 Query Execution Architecture
 Microsoft SQL Server Analysis Services 2008 consists of server and tools components that enable you to
create databases and manage them. The server components are a set of binaries that comprise the
Analysis Services service. BIDS, SQL Server Management Studio (SSMS), Profiler, and a few additional
binaries constitute the tools components. The multidimensional databases are stored on the server,
which is also referred to as the SSAS engine. SSAS clients communicate to the SSAS engine via XML for
Analysis, a standardized application programming interface for online analytical processing (OLAP).
The XMLA API has two main methods, Discover and Execute. Discover allows callers to request
metadata and data from the databases. Execute lets callers send commands such as Create, Alter, and
Process, which are used for creating/updating the multidimensional database or Multi Dimensional
Expressions (MDX) queries. MDX query results can be retrieved in multidimensional or tabular format
by the client. The Create, Alter, Delete, and Process statements are part of the Data Definition Language
(DDL). SSAS provides a set of object models that abstract XMLA and make it easy for developers to
build applications that can communicate with the SSAS engine.

(continued)

c15.indd 522c15.indd 522 2/10/09 11:50:17 AM2/10/09 11:50:17 AM

Chapter 15: Analyzing and Optimizing Query Performance

523

 Analysis Services Engine Components
 Figure 15 - 3 shows the Analysis Services query execution architecture. Five major components constitute
the Analysis Services server: Infrastructure, Data Mining, Metadata Manager, Storage Engine, and
Formula Engine. These are detailed in the following list.

Query Execution Architecture

Client Application

Query Parser

Populate axes

Compute cell data

Subcube operations Formula
Engine (FE)

FE Caches

Metadata
Manager

Data Mining

Storage Engine (SE)
Evaluation EngineSE Caches Partition Data

Query Storage
Engine

Analysis services

Formula
Engine

MDX query

INFRASTRUCTURE

S
er

ia
liz

e
re

su
lts

 Figure 15 - 3

 Infrastructure : The Infrastructure handles operations such as accepting requests from clients,
distributing the requests to the appropriate components, scheduling the jobs, and memory
management. Parsing and validating the XMLA requests are also part of this component, as well
as providing the support for retrieving data from external data sources. Consider this
component as being the main interface for the client and also providing appropriate
infrastructure to support the operation of the remaining components.

 Metadata Manager : The Metadata Manager handles the DDL statements that operate on the
multidimensional database objects. DDL statements such as Create, Alter, Delete, and Process
are directed from the infrastructure component to the Metadata Manager. This component also
implements the transaction handling for all Analysis Services objects. When processing
statements are issued, it coordinates with the storage engine or data mining component and the
infrastructure to retrieve data from the relational data sources and store them in an optimized
storage format within Analysis Services.

❑

❑

c15.indd 523c15.indd 523 2/10/09 11:50:18 AM2/10/09 11:50:18 AM

524

Part III: Advanced Administration and Performance Optimization

 Data Mining : The Data Mining component (you learn about data mining in Chapter 16) serves
all Data Mining requests. It coordinates with the infrastructure and metadata manager at the
time of processing data mining models. If there are OLAP mining models, the data mining
component sends queries to the storage engine and formula engine components to retrieve
appropriate data from the cube. This component handles Discover and DMX queries sent to the
data mining models.

 Storage Engine : The Storage Engine is one of the core components of an OLAP database. It
populates the multidimensional database with data from relational databases and optimally
stores them on disk. It also optimizes the storage for dimension and cube data and builds
relevant indices to aid in fast and efficient retrieval of the data from the disk. Typically you will
see around a 10:1 compression ratio between the relational data and the OLAP data. The storage
engine component provides internal interfaces to the formula engine component so that
subcubes of data can be retrieved; these can then be used by the formula engine for efficient
retrieval and aggregation of the data to satisfy MDX query requests.

 Formula Engine : The MDX Query Processor, also referred to as Formula Engine, determines the
execution strategy for each MDX query. The Formula Engine can be considered the most
important component with respect to MDX queries and calculations because the query
evaluation and computation is done by this component. It translates each query into a sequence
of requests to the Storage Engine to access the data, and computes the results of the query
based on any calculations defined in the multidimensional database. It also implements caching
for optimal query performance.

 Stages of Query Execution
 A query is sent from a client to the Analysis Services engine, as shown in Figure 15 - 3 . The Analysis
Services engine first parses the client request and routes it to the Data Mining Engine, the Formula
Engine, or the Metadata Manager. Figure 15 - 3 shows the query execution architecture for serving
Discover and MDX queries. There are several key steps in query evaluation: parsing the query,
populating and serializing the axes, computing the cell data, and serializing the results back to the client.
The following list provides more detail of each of the steps:

 Parsing the query : The MDX query is first analyzed by the query parser and then passed on to
the Formula Engine. If there is a syntactical error in the query, the parser returns an appropriate
error message to the client.

 Populating the axes : The Formula Engine evaluates the members of the axes of the MDX query.
After this has been done, the details of the axes are populated.

 Serializing the axes : After the axes are evaluated and populated, Analysis Services sends details
of the cube being queried back to the client, including the hierarchies and levels of the cube
dimensions. Then the axes information, which includes the tuples and members that form the
axes, are serialized. Some dimension properties of the members such as caption, unique name,
and level name are sent to the client by default. If additional properties are requested in the
MDX query, they will be included as well.

 Evaluating the cell data : After the axes data has been populated, the Analysis Services engine
understands which cell coordinates need to be evaluated. The Formula Engine (FE) first tries to
retrieve the results from the FE cache. If the query cannot be retrieved from the FE cache,
appropriate internal queries are sent to the Storage Engine. The Storage Engine (SE) has its own
cache. The SE determines if the query can be satisfied from the SE cache. If the query results are

❑

❑

❑

❑

❑

❑

❑

c15.indd 524c15.indd 524 2/10/09 11:50:19 AM2/10/09 11:50:19 AM

Chapter 15: Analyzing and Optimizing Query Performance

525

not available in the SE cache, results are retrieved from partition data on the disk, stored in the
SE cache, and sent to the FE. The FE then performs the calculations needed to satisfy the query
and is then ready to send the results back to the client.

 Serializing the cells : After the results are available, they are sent back to the client. The results
are sent in the XMLA format.

 Query Evaluation Modes
 Now that you understand the various stages of MDX query evaluation, it ’ s time to look at the two query
evaluation modes in Analysis Services 2008: cell by cell mode and subspace computation.

 Cell by Cell Mode
 When an MDX query has been parsed, it is evaluated to see if the query can use the subspace
computation mode. (The factors that determine whether the query can use the subspace computation
mode are addressed in the next section.) If the query cannot be evaluated in the subspace
computation mode, it is evaluated in the cell by cell mode.

 Query evaluation can include several thousand or even millions of cells, and thus evaluating every cell,
which happens in the cell by cell mode, is typically slower than the subspace computation mode. The
following example, an MDX query against the sample Adventure Works DW 2008, will help you see how
cell by cell mode works:

WITH MEMBER Measures.ContributionToParent AS
([Measures].[Internet Sales Amount]/
 ([Measures].[Internet Sales Amount],
 [Customer].[Customer Geography].CurrentMember.Parent)),
FORMAT_STRING=”Percent”
SELECT {[Product].[Product Categories].[Category].MEMBERS} ON 1,
[Customer].[Customer Geography].[Country].MEMBERS ON 0
FROM [Adventure Works]
WHERE (Measures.ContributionToParent)

 The preceding MDX query contains a calculated member that calculates the contribution of [Internet
Sales Amount] from each country for each product. If you execute this query in the SSMS MDX query
editor, you will see the results as shown in Figure 15 - 4 .

❑

 Figure 15 - 4

c15.indd 525c15.indd 525 2/10/09 11:50:19 AM2/10/09 11:50:19 AM

526

Part III: Advanced Administration and Performance Optimization

 You can see that there are six countries and four products in the results. If you aggregate the percentage
for each product across all countries you will get 100 percent. You can easily see that the United State ’ s
contribution for the company ’ s [Internet Sales Amount] is the maximum for all the products. Once the
axes information is populated, Analysis Services needs to calculate the values for 24 cells. The cell by cell
mode in Analysis Services does this using the following steps:

 1. Evaluate the measure [Internet Sales Amount] for a cell.

 2. Evaluate the [Internet Sales Amount] for the member [Customer].[Customer Geography].[All
Customers] for that cell.

 3. Evaluate the measure ContributionToParent, which is the calculated member in the MDX query
for that cell.

 4. Repeat steps 1, 2, and 3 for each cell including cells that have null values.

 Results of steps 1 and 2 for all the cells are shown in Figure 15 - 5 .

 Figure 15 - 5

 In this example you can see that the evaluation of step 2 needs to be done only once. In addition, the cells
for which [Internet Sales Amount] is null don ’ t have to be calculated because the calculated measure
ContributionToParent for null values will be null. When there are millions of cells, evaluation of each
and every cell can take a considerable amount of time. The next evaluation mode, subspace computation,
helps optimize query evaluation.

 Subspace Computation
 The Analysis Services 2008 cube space is typically sparse. This means that only some of the cells in the
dimensional space have values. The remaining cell values are null. The goal of the subspace computation
query evaluation mode is to evaluate MDX expressions only when they need to be evaluated. For
example, if a cell value is null, an MDX expression using that value will result in a null value and

c15.indd 526c15.indd 526 2/10/09 11:50:20 AM2/10/09 11:50:20 AM

Chapter 15: Analyzing and Optimizing Query Performance

527

therefore doesn ’ t have to be evaluated. Subspace computation can reduce cell evaluation time by orders
of magnitude, depending on the sparseness of the cube. Some queries that run in minutes using cell by
cell mode are evaluated within seconds using subspace computation mode. Subspace computation was
first introduced in Analysis Services 2005 Service Pack 2 for a limited number of scenarios. In Analysis
Services 2008, subspace computation mode has been enhanced to cover a wider scope of MDX
evaluations and automatic query optimizations.

 The subspace computation mode can be taken by Analysis Services only under specific conditions.
Some of the important conditions where Analysis Services will use the subspace computation mode are
given here:.

 Basic operations that involve arithmetic operators (*, /,+, –), and relational operators (< , > , < =,
 > =, =).

 Static references to members and tuples as well as constant scalars such as NULL.

 Scalar operations using functions IS, MemberValue, Properties, Name, IIF, IsNonEmpty, Case,
IsLeaf, IsSiblings, CalculationPassValue, and member functions such as PrevMember,
NextMember, Lag, Lead, FirstChild, LastChild, Ancestor, and so on.

 Basic Aggregate functions such as Sum, Min, Max, and Aggregate on static sets; as well as sets
built using functions PeriodsToDate, YTD, QTD, MTD, Crossjoin, Cousin, Descendants,
Children, Hierarchize, and Members.

 The CurrentMember function (only on the Measures dimension) and basic unary operators and
semi - additive measures.

 Some examples where subspace computation mode will not be chosen include named sets when used
with Aggregate functions, dynamic operations (for example: [Date].[Fiscal].Lag([Measures].[Count])),
and when encountering recursion.

 As an example, consider the simple MDX query from the previous section. The MDX query is first
analyzed to determine if it can be evaluated using subspace computation mode. Because the answer is
yes, Analysis Services uses the following steps for evaluating the query:

 1. Retrieve non - null values of the [Internet Sales Amount] measure for the query results space.

 2. Retrieve the [Internet Sales Amount] for member [Customer].[Customer Geography]
.[All Customers] once.

 3. Evaluate the ContributionToParent measure for the non - null values retrieved.

 Figure 15 - 6 provides a graphical illustration comparing the cell by cell and subspace computation
modes. Assume the machine in the diagram is the Analysis Services engine. The figure on the left shows
the cell by cell mode, where all the cells are evaluated. The figure on the right shows that the cells that
have non - null values (highlighted by darker color) are first identified via storage engine requests and
then evaluation is only done for those cells. Note that when Analysis Services serializes the results back
to the client, it only includes the cell values that contain data. The remaining cell values are assumed to
be null. This is shown in Figure 15 - 7 with an MDX query. This MDX query should return 24 cells with
cell ordinals 0 to 23. However, this only returns 18 cell values because the cell values corresponding to
the product member Components ([Product].[Product Categories].[Category]. & [2]) are null. The client
object models provided by Analysis Services 2008 interpret the results returned from the Analysis
Services engine and populate the missing cells with null values for the client accessing the data.

❑

❑

❑

❑

❑

c15.indd 527c15.indd 527 2/10/09 11:50:20 AM2/10/09 11:50:20 AM

528

Part III: Advanced Administration and Performance Optimization

Internet
Sales

Amount

Qty

Internet
Sales

Amount

Qty

Cell By Cell

Subspace Computation
 Figure 15 - 6

c15.indd 528c15.indd 528 2/10/09 11:50:20 AM2/10/09 11:50:20 AM

Chapter 15: Analyzing and Optimizing Query Performance

529

 Analysis Services has two NON EMPTY code paths that would eliminate null cell values: Na ï ve NON
EMPTY and Express NON EMPTY. The Na ï ve NON EMPTY code path was used in the cell by cell mode
and the Express NON EMPTY path was used to identify the tuples that contained data. However, in
Analysis Services 2005 Express NON EMPTY was restricted to measures that did not have calculations
or where NON_EMPTY_BEHAVIOR (discussed later in this chapter) was specified. Analysis Services
2008 Express NON EMPTY has been enhanced to support measures with calculations (except for
recursive or complex overlapping calculations). Now that you ’ ve learned more about the Analysis
Services query execution architecture and query evaluation modes, let ’ s look into analyzing performance
bottlenecks and fine - tuning them.

 Performance Analysis and Tuning Tools
 Analysis Services 2008 includes significant enhancements targeted at getting the best query performance.
Improvements include tools to help in designing cubes, subspace computation optimization, caching
enhancements, and improved writeback query performance (you learn about this later in the chapter).
You might still have queries that are not performing as expected, however, due to cube design or the
way MDX has been written. To analyze and improve your query performance, you can use tools that
will help you analyze the performance of your queries and then tune them to get the best performance
from Analysis Services 2008.

 Figure 15 - 7

c15.indd 529c15.indd 529 2/10/09 11:50:21 AM2/10/09 11:50:21 AM

530

Part III: Advanced Administration and Performance Optimization

 SQL Server Profiler
 SQL Server Profiler is a tool used to trace operations on the SQL Server and Analysis Services database
engines. SQL Server Profiler is the primary performance analysis tool used to debug performance
bottlenecks in SQL Server (including Analysis Services). The ability to trace Analysis Services operations
through SQL Server Profiler was first introduced in SQL Server 2005.

 Analysis Services exposes the commands sent to it as well as internal operations that occur within the
server through what are called events . Some examples of these events are Command Begin, Command
End, Query Begin, and Query End. Each event has properties associated with it such as start time, end
time, and the user sending the query. These properties are shown as columns in the tool. SQL Server
Profiler requests these events and their properties through trace commands to the server. Analysis
Services periodically sends the events to the clients who have subscribed to a trace. SQL Server Profiler
shows the events and event column values in a grid. Only Analysis Services administrators can trace
Analysis Services events. To learn more about how to use the Profiler, follow these steps:

 1. Make sure you are an administrator on the Analysis Services server you want to profile. You can
connect to Analysis Services through SSMS and use the Analysis Services Server Properties
dialog to add users as administrators of Analysis Services, as you learned in Chapter 7 .

 2. Launch SQL Server Profiler from the Start menu: All Programs Microsoft SQL Server
2008 Performance Tools SQL Server Profiler.

 3. The SQL Server Profiler application appears. Create a new trace by selecting File New Trace.

 4. In the Connect to Server dialog, shown in Figure 15 - 8 , select Analysis Services as the Server type
and enter the name of your Analysis Services instance. Click Connect.

 Figure 15 - 8

 5. In the Trace Properties dialog, enter the Trace name, for example “ FirstTrace. ” SQL Server
Profiler provides three trace templates with pre - selected events to trace. Select the Standard
template as shown in Figure 15 - 9 .

c15.indd 530c15.indd 530 2/10/09 11:50:21 AM2/10/09 11:50:21 AM

Chapter 15: Analyzing and Optimizing Query Performance

531

 6. To see the events selected in the standard template, click the Events Selection tab. You will
see the event columns that have been selected, as in Figure 15 - 10 . This page only shows the
events that have properties that have been selected. To see all the events and event properties
supported by Analysis Services, check the Show All Events and Show All Columns checkboxes,
respectively. Familiarize yourself with the various events and click Run.

 Figure 15 - 9

Figure 15-10

c15.indd 531c15.indd 531 2/10/09 11:50:30 AM2/10/09 11:50:30 AM

532

Part III: Advanced Administration and Performance Optimization

 7. You will see the various event property columns within Profiler. To see processing operations
events, open the Adventure Works DW sample project and deploy it to the Analysis Services
instance. You will see the events that happen during processing, including the processing
duration of each object, as shown in Figure 15 - 11 . The SQL Server Profiler gives you useful
information such as the time it takes to process each dimension, the partition processing time,
and the overall processing time of the entire database.

Figure 15-11

 After the processing has completed for the Adventure Works cube, send the following MDX query using
SQL Server Management Studio:

SELECT {[Measures].[Sales Amount],[Measures].[Gross Profit]} ON 0,
[Customer].[Customer Geography].MEMBERS ON 1
FROM [Adventure Works]

 You can see the Query events in the SQL Server Profiler as shown in Figure 15 - 12 . You can see the
duration of each event in the Profiler trace (not shown in Figure 15 - 12). One piece of information that is
interesting to notice is the subcubes accessed by this query and how long each subcube query took. The
subcube events indicate the requests of the storage engine to retrieve data from disk. You can utilize
this subcube information to build custom aggregations to optimize query performance.

c15.indd 532c15.indd 532 2/10/09 11:50:32 AM2/10/09 11:50:32 AM

Chapter 15: Analyzing and Optimizing Query Performance

533

 Assume you built aggregations using a usage - based optimization wizard. You would like to find out if
the aggregations are being utilized. Analysis Services provides events that help you identify if the
aggregations are hit. Create a new Trace and switch to the Events Selection tab. Check the box next to
Show All Events. Expand the events under the Query Processing event group. You can see the events
related to query processing that are provided by Analysis Services as shown in Figure 15 - 13 .

 If you select the events under Query Processing and monitor the trace events you will be able to obtain
information such as if the Non Empty code path is being utilized, if the MDX script is being evaluated, if
data is retrieved from Aggregations (Get Data From Aggregation event) or from the existing cache (Get
Data From Cache event). These events help you identify more details about the queries sent by the users
as well as their duration. You can later analyze the MDX queries, build usage - based optimization
aggregations for long - running queries, enhance your aggregations using the new Aggregation Designer
(which is discussed in Chapter 9), or try to optimize the long - running MDX queries (which is discussed
later in this chapter). You do need to know a little bit about the internals of the server to fine - tune it. We
believe the ability to trace Analysis Services activity through SQL Server Profiler will help with that, so
try it out.

Figure 15-12

c15.indd 533c15.indd 533 2/10/09 11:50:33 AM2/10/09 11:50:33 AM

534

Part III: Advanced Administration and Performance Optimization

 Performance Monitor
 Analysis Services provides several performance monitoring counters that help you understand internal
operations of your Analysis Services server, as well as help in debugging and troubleshooting
performance issues. You need to be an administrator on the Analysis Services server to utilize PerfMon, a
tool that lets you observe and analyze the Analysis Services 2008 performance counter values. The
following steps walk you through working with Analysis Services performance counters:

 1. Click Start and type perfmon , as shown in Figure 15 - 14 , and select perfmon.exe from the
Programs list.

Figure 15-13

Figure 15-14

c15.indd 534c15.indd 534 2/10/09 11:50:46 AM2/10/09 11:50:46 AM

Chapter 15: Analyzing and Optimizing Query Performance

535

 2. You will see the Reliability and Performance Monitor application. Select the Performance
Monitor page as shown in Figure 15 - 15 .

Figure 15-15

 3. Right - click the page and select Add Counters. You will see the groups of Analysis Services
performance counters as shown in Figure 15 - 16 . You can expand a specific group to see the list
of counters in that group.

 4. Select the MSAS 2008:MDX category of performance counters and click Add to include these
counters.

 5. Click OK in the Add Counters dialog.

c15.indd 535c15.indd 535 2/10/09 11:50:47 AM2/10/09 11:50:47 AM

536

Part III: Advanced Administration and Performance Optimization

 The MDX counters are added to the Performance Monitor page as shown in Figure 15 - 17 . If you
click a specific counter you can see the line view of that value over time. It is easier to
understand and analyze the counters using their raw numbers.

 6. Click the down arrow beside the Change Graph Type icon and select Report, as shown in
Figure 15 - 17 .

Figure 15-16

Figure 15-17

c15.indd 536c15.indd 536 2/10/09 11:50:47 AM2/10/09 11:50:47 AM

Chapter 15: Analyzing and Optimizing Query Performance

537

 You will see the list of MDX counters along with their values in a report format as shown in
Figure 15 - 18 . If you execute MDX queries from SSMS or browse the cube using the Cube Browser in
SSMS or BIDS, you should see these values getting updated. For example, you can see the “ Number
of bulk - mode evaluation nodes ” (nodes during subspace computation evaluation) and “ Number of
cell - by - cell evaluation nodes ” performance counters for a specific query to understand if the query is
using the subspace computation or a cell by cell evaluation mode. This can help you to understand
and optimize your MDX query. Similar to MDX performance counters, there are Analysis Services
performance counters in other categories such as Processing, Aggregations, Connections, and so on.
These counters are very valuable when you are troubleshooting specific problems and are not able to
understand or resolve the problem using SQL Server Profiler traces. We recommend that you take a look
at the various Analysis Services counter groups. In addition to the performance counters provided by
Analysis Services, you can also look at other performance counters such as processors, memory, and disk
I/O on your computer system to understand and troubleshoot relevant issues such as long - running
queries, which are CPU intensive or memory/disk intensive.

Figure 15-18

 Task Manager
 Most of you have used the Task Manager on your computer to look at the percentage of CPU time
or memory consumed by a process. You can get the same information for Analysis Services using the
Task Manager as shown in Figure 15 - 19 . The process msmdsrv.exe is the Analysis Services 2008 process.
If you have multiple instances of Analysis Services installed you will see multiple instances of msmdsrv.
exe in Task Manager. You can also see the various instances of Analysis Services on your machine using
the Services tab in Task Manager. The Task Manager gives you a quick way to understand if your
Analysis Services server is CPU - intensive or its memory usage is growing when you have executed a
long - running query.

c15.indd 537c15.indd 537 2/10/09 11:50:48 AM2/10/09 11:50:48 AM

538

Part III: Advanced Administration and Performance Optimization

 SQL Server Profiler, Performance Monitoring counters, and Task Manager help you analyze and
troubleshoot issues with your Analysis Services. SQL Server Management Studio and Business
Intelligence Development Studio are tools that help you tune your Analysis Services instance.

 SQL Server Management Studio
 You can use SSMS to execute your MDX queries and get the query execution time or look at the query
results. You can also use it along with the Profiler to troubleshoot specific query issues. In addition, you
can also use SSMS for debugging processing issues or tuning your Analysis Services server processing
options. SSMS also helps you define aggregations to help speed up query performance. Other important
uses of SSMS are changing your Analysis Services server properties, fine - tuning engine behavior, and
restarting your Analysis Services service if needed.

 Business Intelligence Development Studio
 You can use BIDS to refine your cube and dimension design based on the troubleshooting you have
done using other tools (discussed in Chapters 5 , 6 , 8 , and 9). In addition, BIDS helps you build custom
aggregations and make use of usage - based optimization, which helps you improve query performance.

 Analyzing Query Performance Issues
 Analysis Services 2008 has significant query optimization features. However, there are still factors
that can affect query performance such as the complexity of the cube ’ s design, aggregations, server
configuration properties, hardware resources, and so on. Before you start analyzing query performance
you need to understand where time is being spent during the overall execution. You already learned that
there are two major components, Formula Engine (FE) and Storage Engine (SE), where the majority of

Figure 15-19

c15.indd 538c15.indd 538 2/10/09 11:50:48 AM2/10/09 11:50:48 AM

Chapter 15: Analyzing and Optimizing Query Performance

539

the execution time is being spent. The time spent in the infrastructure component is negligible and hence
we can arrive at the following equation:

MDX Query execution time = Formula Engine time + Storage Engine time

 In the “ SQL Server Profiler ” section earlier in the chapter, you learned that query subcube events
indicate requests to the SE. Hence the SE time is the duration of time spent for all the query subcube
events. The overall query execution time for the query can be obtained from the SQL Server Profiler
trace. The time spent by the query in the FE component is equal to the difference of total execution time
minus the SE time. These relationships are expressed in the following equations:

Storage Engine time = Time needed to evaluate all query subcube events

Formula Engine time = Total query execution time - Storage Engine time

 Assuming you want to analyze and optimize your query execution time, we recommend that you focus
your efforts on the following recommendations:

 If the SE time is greater than 30 percent of the total execution time, look at optimizing it.

 If the FE time is greater than 30 percent of the total execution time, look at optimizing it.

 If both FE and SE times are greater than 30 percent of the total execution time, then look at
optimizing both areas.

 Understanding FE and SE Characteristics
 The FE performs the evaluation of the results and sends the results back to the client. This component is
mostly single - threaded and CPU - intensive because it might have to iterate over millions of cells to
perform calculations. If you observe, using Task Manager, that Analysis Services is consuming
100 percent of one of the processors during a query evaluation, then you can assume that the time is
being spent in the Formula Engine. The FE has very little disk utilization.

 The SE retrieves data for subcubes from the SE cache or from disk when requested by the FE. Partition
and dimension data is stored as segments that can be read in parallel. Hence the SE component is heavily
multithreaded to maximize the hardware resources and perform I/O operations in parallel. The SE is
CPU - and disk - intensive. Hence if you see all the processors of your machine utilized and heavy disk
usage (using Task Manager or performance counters), you can be confident that the query is spending
time in the SE component.

 When analyzing query performance, one important thing you need to be aware of is predictability.
Analysis Services caches data in the SE and FE components. In addition, you have caching done by the
operating system for disk I/O and the multi - user environment that play a critical factor in query
performance. Hence, executing the same MDX query a second time can result in improved performance
due to caching in Analysis Services. The recommended approach is to investigate query performance in
single - user mode. In addition, Analysis Services has the Clear Cache command that clears all the
Analysis Services caches. This improves the predictability of query execution when you are investigating
performance issues. The syntax for the Clear Cache statement is shown in the following code. You need
to pass the database ID as input to the statement to clear the caches of a specific database.

 < ClearCache xmlns=”http://schemas.microsoft.com/analysisservices/2003/engine” >
 < Object >
 < DatabaseID > MyDatabaseID < /DatabaseID >
 < /Object >
 < /ClearCache >

❑

❑

❑

c15.indd 539c15.indd 539 2/10/09 11:50:50 AM2/10/09 11:50:50 AM

540

Part III: Advanced Administration and Performance Optimization

 Operating system file caching can also impact query performance. To get repeatable results, you can shut
down and restart the Analysis Services service or even the entire machine if needed. In most cases you
should be able to get repeatable results using the Clear Cache statement.

 Common Solutions for Slow Queries
 MDX query execution time is the sum of time spent in the FE and SE components. The issues causing
queries to be slow can be classified into three main categories: large SE requests, multiple SE requests,
and FE - intensive queries.

 Large Storage Engine Requests
 As you learned earlier, query evaluation plans are decided by the FE. A large SE request translates to a
subcube query that takes a really long time. This means the majority of the query execution time is being
spent getting results for a single SE request. An SE request can take a very long time due to factors such
as having a very large partition, no aggregations, or aggregations getting missed. You need to follow the
best practices mentioned in Chapter 14 to design the right cube, including defining effective attribute
relationships, adopting an effective partitioning scheme, and designing aggregations using Aggregation
Designer or usage - based optimization. These will help resolve the issue of an MDX query being slow
due to a large storage engine request.

 Several Storage Engine Requests
 If you see several subcube query events in the SQL Server Profiler when you execute an MDX query
repeatedly, it means that the SE caches are being missed each time and hence the SE component has to
retrieve data from the disk. Retrieving data from disk is an expensive operation compared to getting the
data from the SE caches. The EventSubclass property of the Query Subcube Verbose event shows
whether the query is retrieved from cache or non - cache data. If the query is retrieved from non - cache
data, the data is being retrieved from disk. Analysis Services 2008 provides you a way to forcibly cache
the data in SE component using the Create Cache statement. The syntax of the statement is

CREATE CACHE FOR < CubeName > AS < MDX Expression >

 The Create Cache statement applies to a specific cube. This is extremely useful in cases where you
are aware of long - running queries due to several storage engine requests. You can “ warm up ” the
Analysis Services SE cache using this statement, which can help improve performance of MDX queries
using this cache.

 Formula Engine – Intensive Query
 The FE component is single threaded. Hence, if an MDX query contains intensive calculations, it could
spend a significant amount of its execution time in the FE component. You should be able to identify an
FE - intensive query using Task Manager. Look for msmdsrv.exe pegging one CPU on your machine at
100 percent. One of the critical factors in getting the best performance from your MDX query is to make
sure your query uses the subspace computation code path. Looking at MDX performance counters and
SQL Server Profiler traces should help you identify if your queries are not using subspace computation.
In addition, other MDX query optimization techniques can help you reduce the time spent in the FE
component, which you learn about in the next section.

 Figure 15 - 20 provides a summary of the three categories of problems that can contribute to slow MDX
queries and what techniques to investigate to improve query performance.

c15.indd 540c15.indd 540 2/10/09 11:50:51 AM2/10/09 11:50:51 AM

Chapter 15: Analyzing and Optimizing Query Performance

541

 Query Optimization Techniques
 As you learned earlier in this chapter, MDX query execution time can be impacted by several factors
such as cube design, Analysis Services caching, and hardware. One of the important factors in getting
the best MDX query execution time is the efficiency of your MDX. Using the right MDX query
optimization technique is not simple and involves a deeper understanding of your cube and MDX. In
this section you learn some of the important techniques that can help you optimize your MDX queries.

 Using NON EMPTY on Axes
 Most cubes are quite sparse. By sparse we mean that many of the cells in the cube space do not have a
value associated with them. For example, in the Adventure Works DW 2008 sample Analysis Services
database, if every coordinate of the Internet Sales measure group has data and assuming only the key
attribute in each dimension, the total number of cells with data would be (Date) 1189 * Date (Ship Date)
1189 * Date (Delivery Date) 1189 * Customer (18485) * Promotion (17) * Product (398) * Sales Territory (12)
* Sales Reason (11) * Source Currency (106) * Destination Currency (15) * Internet Sales Order Details
(60,399), which is 2.66*10 27 cells. This result increases when additional attributes are added from each
dimension. Although most of the cells do not have any business meaning associated with them — for
example, if delivery date is ahead of order date — they belong to cube space and can be queried by the
users. Querying such cells results in a null value, which indicates that data is not available for that cell ’ s
coordinates.

 The fact table rows represent the leaf - level cells for a cube. The fact table row count is much less than
possible cube space. The Analysis Services engine has many optimizations for improving query
performance by limiting the search space. The basic rule is that if a cube doesn ’ t have calculations (such
as calculated scripts, custom rollup, and custom members), the non - empty space of the cube is defined
by fact table cells and their aggregations. Analysis Services allows users to write effective, optimized
MDX queries to prevent empty cells from being returned. This is because those empty cells simply do
not add value for business analysis. By limiting the search space, Analysis Services can find the results
much more quickly.

 Analysis Services 2008 supports many ways for users to eliminate cells containing null values in a query.
The keyword NON EMPTY eliminates members along an axis whose cell values are null. The NON
EMPTY keyword is used at the beginning of the axis statement in an MDX query as shown here:

SELECT Measures.Members on COLUMNS,
NON EMPTY Dimension.Hierarchy.Members on ROWS
From < CubeName >

Solution Partitioning,
aggregations

CREATE
CACHE

Cell-by-cell

Subspace

Optimizations:
NEB, Auto-exists,

Scope,
MemberValue

...

Large SE
RequestScenario Several SE

Requests
FE Intensive

Query

Figure 15-20

c15.indd 541c15.indd 541 2/10/09 11:50:51 AM2/10/09 11:50:51 AM

542

Part III: Advanced Administration and Performance Optimization

 The NON EMPTY keyword can be used on rows or columns (or any axis). In most cases, only results
with non - empty cells are meaningful for end users. Hence, most Analysis Services 2008 client tools
generate MDX queries with the NON EMPTY keyword. We recommend that you use the NON EMPTY
keyword in your MDX cell set and row set queries whenever possible. Not only will it limit the size of
the returned cell set, but additional optimizations are applied when you do this that will speed up your
query execution time.

 Following is an MDX query without the NON EMPTY keyword. Execute this query using SQL Server
Management Studio against a deployed sample Adventure Works project.

SELECT [Customer].[Customer Geography].[Customer].members *
 Descendants([Product].[Product Categories].[Category]. & [3],[Product].
 [Product Categories].[Product Name]) ON 1,
 {[Measures].[Internet Sales Amount]} ON 0
FROM [Adventure Works]

 The query returns 18,485 cells. Now change the query to include the NON EMPTY keyword on both axes
as shown here and execute the new query in SQL Server Management Studio:

SELECT NON EMPTY [Customer].[Customer Geography].[Customer].members *

 Descendants([Product].[Product Categories].[Category]. & [3],[Product].
 [Product Categories].[Product Name]) ON 1,
 {[Measures].[Internet Sales Amount]} ON 0
FROM [Adventure Works]

 This query, which includes the NON EMPTY keyword, returns just 6,853 cells, which is a reduced
number of cells to evaluate. The execution time for the query with NON EMPTY is lower than that of the
query without NON EMPTY. We recommend that you follow these steps to observe the performance:

 1. Connect to the sample Adventure Works 2008 Analysis Services database.

 2. Start SQL Server Profiler.

 3. Create a New Trace with Query Begin and Query End events selected.

 4. Send the Clear Cache statement.

 5. Send the query without NON EMPTY.

 6. Send the Clear Cache statement.

 7. Send the MDX query with NON EMPTY.

 8. Observe the Duration column to see the performance difference between the two queries.

 You can see the performance difference in duration times between the two queries as shown in
Figure 15 - 21 . This example highlights the benefit of eliminating empty cells using NON EMPTY.

c15.indd 542c15.indd 542 2/10/09 11:50:52 AM2/10/09 11:50:52 AM

Chapter 15: Analyzing and Optimizing Query Performance

543

 Using Non Empty for Filtering and Sorting
 Many users apply filter conditions on a set or try to evaluate the top N members of a set based on certain
conditions using the Filter and TopCount functions, respectively. In most cases, only non - empty
members are needed in the results of the Filter and TopCount functions. You can improve the
performance dramatically by first using NONEMPTY() to retrieve non - empty sets, followed by the Filter,
Sort, or TopCount functions on the smaller set. In the Adventure Works sample, for example, if you want
to get the top ten Customer/Product combinations to start a marketing campaign, your query will look
like the following:

SELECT
TopCount([Customer].[Customer Geography].[Customer].members*
 [Product].[Product Categories].[Product].members, 10 ,
 [Measures].[Internet Sales Amount]) ON ROWS ,
 [Measures].[Internet Sales Amount] ON COLUMMNS
FROM [Adventure Works]

 Notice this query contains a cross - join of customers and products (shown by the following expression).
Whenever a cross - join is applied, the server sorts the result based on the order of the hierarchies.

 ([Customer].[Customer Geography].[Customer].members*[Product].
 [Product Categories].[Product].members)

 The cross - join of the customer and product dimension results in 18484 * 397 = 7,338,148 cells. Analysis
Services now evaluates the top 10 cells out of the seven million cells to return the results for the preceding
query. This query took around 48 seconds on the machine we used to run the query and it consumed 1
CPU at 100 percent during the entire execution. Most of the cells of the cross - join were actually empty
cells that need not have been part of the result of the cross - join. Not only did the server take the

Figure 15-21

c15.indd 543c15.indd 543 2/10/09 11:50:52 AM2/10/09 11:50:52 AM

544

Part III: Advanced Administration and Performance Optimization

time in sorting these cells, but it also had to iterate through the seven million cells to determine the top
10. The following query uses the NonEmtpyCrossJoin function, which eliminates the empty cells:

SELECT
TopCount(NONEMPTYCROSSJOIN(
 [Customer].[Customer Geography].[Customer].members*
 [Product].[Product Categories].[Product].members,
 {[Measures].[Internet Sales Amount]},1),10,
 [Measures].[Internet Sales Amount]) ON ROWS ,
 [Measures].[Internet Sales Amount] ON COLUMNS
FROM [Adventure Works]

 In this query, the NonEmptyCrossJoin function first eliminates all empty cells, and hence the TopCount
function had a smaller set of cells to work on. The query took 3 seconds on the same machine used in the
previous example because of the optimization provided by using the NonEmptyCrossJoin function.
Only cells containing fact data were sorted and the top 10 values were returned. The performance
improvement is dramatic (can be observed in SSMS or in the SQL Server Profiler duration column) and
both queries returned the exact same results. The rule of thumb is that the fewer tuples or cells involved
in calculations, the better the query performance. Because Analysis Services has an efficient algorithm to
get non - empty sets, you should use NonEmpty whenever it is applicable and appropriate for your
business requirements. You can use the NonEmptyCrossJoin function whenever you are aware that a
real measure will be used by the server for Non - Empty evaluation, but use it with caution when you
have calculated measures because certain optimization may not be available for all calculated measures.
You can also use the HAVING clause, which eliminates cells with null values as shown in Chapter 10 .

 Using NON_EMPTY_BEHAVIOR for Calculations
 The NON EMPTY keyword checks the fact data to determine empty cells. However, if cell values are the
result of calculations, Non Empty can be slow. If you query for cells that involve evaluation of complex
calculations, then the cells ’ emptiness (if the cell returns a null value) is not determined by fact data;
each cell must be evaluated to return the correct results. Analysis Services provides you with a keyword
called NON_EMPTY_BEHAVIOR to instruct the server to use an optimized algorithm to determine cells ’
emptiness. The following query returns the forecast sales by applying different rates:

WITH MEMBER [Measures].[ForecastSales] AS
‘iif([Measures].[Internet Sales Amount] > 500 ,
 [Measures].[Internet Sales Amount]*1.2,
 [Measures].[Internet Sales Amount]*1.2)’
SELECT NON EMPTY [Customer].[Customer Geography].[Customer].members*
 Descendants([Product].[Product Categories].[Category]. & [3],[Product].
 [Product Categories].[Product]) ON 1 ,
NON EMPTY {[Measures].[ForecastSales]} ON 0
FROM [Adventure Works]

 Even though this query uses NON EMPTY, MDX queries with calculations like this one can be slow.
This is because the optimized code path is not applied on complex calculated members. In this query
you have a calculated member that is multiplied by 1.2 and hence the server needs to evaluate the
expression to identify if the corresponding cells are empty. In order to have Analysis Services apply
NON EMPTY behavior to the calculated member, you can specify the NON_EMPTY_BEHAVIOR
property, which ties the calculated measure to a real fact measure. The server will then use the optimized

c15.indd 544c15.indd 544 2/10/09 11:50:52 AM2/10/09 11:50:52 AM

Chapter 15: Analyzing and Optimizing Query Performance

545

code path for the non - empty determination. Execute the following modified query that specifies
NON_EMPTY_BEHAVIOR:

WITH MEMBER [Measures].[ForecastSales] AS
‘iif([Measures].[Internet Sales Amount] > 500 ,
 [Measures].[Internet Sales Amount]*1.2,
 [Measures].[Internet Sales Amount]*1.2)’,
NON_EMPTY_BEHAVIOR = ‘[Measures].[Internet Sales Amount]’
SELECT NON EMPTY [Customer].[Customer Geography].[Customer].members*
 Descendants([Product].[Product Categories].[Category]. & [3],[Product].
 [Product Categories].[Product]) ON 1 ,
NON EMPTY {[Measures].[ForecastSales]} ON 0
FROM [Adventure Works]

 Here you have provided a hint to Analysis Services to use the [Internet Sales Amount] measure while
evaluating the calculation. Such hints help reduce the query execution time because Analysis Services is
able to determine if the calculation returns a null value using the base measure.

 Using SCOPE versus IIF and CASE
 You learned about the SCOPE, IIF, and CASE statements in Chapter 10 . Using SCOPE helps improve
query performance when evaluating cells compared to the IIF and CASE statements. When using
SCOPE, calculations only get applied to the subcube, compared to other calculations, which get
evaluated for the entire cube space. In addition, SCOPE statements are evaluated once statically,
compared to IIF/CASE, which are evaluated dynamically. These two factors contribute to improving
query performance when using SCOPE. The following code is an example of an MDX expression that is
translated from IIF to SCOPE:

CREATE MEMBER Measures.[Sales Amount] AS
 IIF([Destination Currency].CurrentMember IS Currency.USD,
 Measures.[Internet Sales Amount], Measures.[Internet Sales Amount] *
 Measures.AverageRate);

CREATE MEMBER Measures.[Sales Amount] AS Null;
SCOPE(Measures.[Sales], [Destination Currency].Members);
 THIS = Measures.[Internet Sales Amount]* Measures.AverageRate;
 SCOPE(Currency.USA);
 THIS = Measures.[Internet Sales Amount];
 END SCOPE;
END SCOPE;

 Auto Exists versus Properties
 When you include attributes and hierarchies within a dimension in a query, Analysis Services only
returns the relevant members. For example, take the following MDX query:

SELECT [Measures].[Internet Sales Amount] ON 0,
 [Customer].[City]. & [Seattle] & [WA] * [Customer].[State-Province].MEMBERS ON 1
FROM [Direct Sales]

c15.indd 545c15.indd 545 2/10/09 11:50:53 AM2/10/09 11:50:53 AM

546

Part III: Advanced Administration and Performance Optimization

 This query only returns results for (Seattle, Washington) and (Seattle, All Customers). It does not return
the complete cross product of Seattle and all the States in the Customer.[State - Province] hierarchy. As
you learned in Chapter 10 , this behavior is called auto exists and helps improve performance. Hence we
recommend using Exists or CrossJoin functions instead of using the Properties function in your MDX
expression. The following code is an example of how you can rewrite your MDX expressions that use the
Properties function:

Filter(Customer.Members,
 Customer.CurrentMember.Properties(“Gender”) = “Male”)

Exists(Customer.Members, Gender.[Male])

 Member Value versus Properties
 Analysis Services 2008 has an attribute member property called Value Column. When defined, this is
helpful in retrieving the values in a typed format. For example, if you have the yearly income of a
customer, you can retrieve its value as integer rather than as a string and then converting it using one of
the VBA functions. Here is an example of how to use the MemberValue MDX function to retrieve the
Value Column:

Create Set [Adventure Works].RichCustomers As
 Filter(Customer.Customer.Members,
 CInt(Customer.CustomerCurrentMember.Properties(“Yearly Income”))
 > 100000);

Create Set RichCustomers As
 Filter(Customer.Customer.Members,
 Customer.Salary.MemberValue > 100000);

 In this example, the first expression creates a set of customers whose Yearly Income is greater than
100000 using the Properties MDX function, which retrieves the member property. The return type for the
MemberProperty function is a string and you need to use the CInt VBA function to convert this to an
integer value before you compare it with 100000. Please note that the preceding example is provided for
illustration purposes only. The actual data in the sample Adventure Works 2008 in the Yearly Income is a
range represented as string. We recommend you try the preceding illustration on a large database with
appropriate data to see the benefits. When you have a large number of customers, converting strings to
integers becomes expensive. The second MDX expression uses the MemberValue MDX function to
retrieve the value directly as an integer.

 Move Simple Calculations to Data Source View
 If there are very simple static calculations such as converting based on exchange rates, these calculations
can be changed to calculated columns in the Data Source View (DSV). Analysis Services does these
calculations at processing time and stores the values in the cube rather than calculating these expressions
during query execution time. These simple calculations should be really fast in Analysis Services 2008
and you may not observe the performance hit. However, as a general best practice, we recommend that
you move them to DSV.

c15.indd 546c15.indd 546 2/10/09 11:50:53 AM2/10/09 11:50:53 AM

Chapter 15: Analyzing and Optimizing Query Performance

547

 Features versus MDX Scripts
 Analysis Services 2008 provides features such as many - to - many dimensions, measure expressions, unary
operators, custom rollup, and semi - additive measures. You have learned about these features and how
and when to use them during the course of this book. Almost all of these features can be defined as MDX
expressions in MDX script. We highly recommend that you design your cubes using built - in features
rather than defining the equivalent functionality as MDX expressions in MDX Script. The built - in
features will provide better performance for most scenarios. If you do find a specific feature causing
query performance degradation, you can re - visit implementing the functionality in MDX scripts.

 We have looked at some of the common problems the Analysis Services team has observed while
investigating customer performance issues and how to solve them in this section. There are additional
MDX optimizations that you can perform. We recommend that you look at the following resources for
additional information on MDX optimizations:

 MDX Solutions: With Microsoft SQL Server Analysis Services , 2 nd edition by George Spofford et al.,
(Wiley, 2006), www.wiley.com

 The SQL Customer Advisory Team, http://www.sqlcat.com

 Microsoft OLAP by Mosha Pashumansky, http://sqlblog.com/blogs/mosha

 Richard Tkachuk ’ s Analysis Services Page, http://www.sqlserveranalysisservices.com

 Scale Out with Read - Only Database
 After performing all these query optimization techniques you might still find query performance
degradation when multiple users are connected to your Analysis Services instance and actively querying
the database. This is one of the problems Analysis Services customers face when the customer load on a
specific database increases. You can try to use larger machines with more CPUs if memory or CPU is the
bottleneck. You can also move to 64 - bit machines if you are currently using 32 - bit hardware. Of course,
as you scale up, the cost of your machines will become higher. Analysis Services 2008 provides the new
read - only database feature, which is discussed in Chapter 7 . If your customer needs are only to improve
query performance and your customers are only performing read - only queries (no updates, no
writeback), you can use the read - only database feature and create a scale out strategy as shown in
Figure 15 - 21 to improve query performance for this type of multi - user scenario.

 We recommend that you have multiple Analysis Services 2008 servers configured to read from a single
database on a shared SAN (Storage Area Network) to form Scalable Shared Databases that can be
queried by multiple users. These servers need to be load balanced using a network load balancer as
shown in Figure 15 - 22 . You need a separate isolated machine for processing the database when there are
data updates. Once the database has been processed you can detach the database and copy it to your
SAN. You can then utilize XMLA scripts to attach the database to the Analysis Services query servers in
read - only mode. All the query servers will have an identical copy of the database and be able to serve
multiple users. This scale out strategy will help you improve query performance for this type of multiple
user scenario.

❑

❑

❑

❑

c15.indd 547c15.indd 547 2/10/09 11:50:53 AM2/10/09 11:50:53 AM

548

Part III: Advanced Administration and Performance Optimization

 Writeback Query Performance
 As you learned in Chapter 12 , with Analysis Services 2008 you can obtain improved writeback
performance by enabling the MOLAP storage option when you enable writeback. When you perform
cell writeback, Analysis Services writes data back to the relational table specified. In addition, the
MOLAP partition associated with the writeback partition is reprocessed automatically. Because of this,
all queries using the writeback partition will retrieve the data from the MOLAP storage rather than
fetching the data from the relational table and then aggregating the data. Thus, using MOLAP storage
for the writeback partition helps improve query performance. We recommend that you set MOLAP
storage mode for the writeback partition when you enable the cube for cell writeback.

Load Balancer–NLB, F5, Custom
ASP.NET

Read Only DB on
shared SAN Drive

Processing
Server

Clients: Excel, Proclarity,
Internet Explorer

Scalable Shared Databases

Query
Servers

Detach & Attach

Cube
Processing

Figure 15-22

c15.indd 548c15.indd 548 2/10/09 11:50:53 AM2/10/09 11:50:53 AM

Chapter 15: Analyzing and Optimizing Query Performance

549

 Summary
 In this chapter you first learned about the calculation model in Analysis Services, followed by the query
execution architecture of Analysis Services. You learned about the various tools that can be used to
investigate the performance of Analysis Services. The SQL Server Profiler and perfmon counters in
particular are very valuable tools that can help you investigate performance bottlenecks. You then
learned about various classes of problems that can contribute to slow queries, along with
recommendations on how to solve these problems. Finally, you learned about important query
optimization techniques and best practices that can help you fine - tune your MDX queries. After reading
Chapters 14 and 15 , upon hearing the very word performance , your head should swell with visions of
highly performing, scalable systems, each optimized to fulfill its designated mission!

c15.indd 549c15.indd 549 2/10/09 11:50:54 AM2/10/09 11:50:54 AM

c15.indd 550c15.indd 550 2/10/09 11:50:54 AM2/10/09 11:50:54 AM

